skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Robertson, Benjamin P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Extensional flow properties of polymer solutions in volatile solvents govern many industrially-relevant coating processes, but existing instrumentation lacks the environment necessary to control evaporation. To mitigate evaporation during dripping-onto-substrate (DoS) extensional rheology measurements, we developed a chamber to enclose the sample in an environment saturated with solvent vapor. We validated the evaporation-controlled DoS device by measuring a model high molecular weight polyethylene oxide (PEO) in various organic solvents both inside and outside of the chamber. Evaporation substantially increased the extensional relaxation time$$\lambda _{E}$$ λ E for PEO in volatile solvents like dichloromethane and chloroform. PEO/chloroform solutions displayed an over 20-fold increase in$$\lambda _{E}$$ λ E due to the formation of an evaporation-induced surface film; evaporation studies confirmed surface features and skin formation reminiscent of buckling instabilities commonly observed in drying polymer solutions. Finally, the relaxation times of semi-dilute PEO/chloroform solutions were measured with environmental control, where$$\lambda _{E}$$ λ E scaled with concentration by the exponent$$m=0.62$$ m = 0.62 . These measurements validate the evaporation-controlled DoS environment, and confirm that chloroform is a good solvent for PEO, with a Flory exponent of$$\nu =0.54$$ ν = 0.54 . Our results are the first to control evaporation during DoS extensional rheology, and provide guidelines establishing when environmental control is necessary to obtain accurate rheological parameters. 
    more » « less